

Enhanced Boardroom Voting with Block chain and Smart Contract

Huiqin Xie
School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

xiehuiqin@iie.ac.cn

Corresponding author

Keywords: Smart Contract, Ethereum, Blockchain, Self-tallying voting protocol, Decentralization

Abstract: We present two decentralized and self-tallying anonymous voting protocols with
multiple candidates using Ethereum block chain, one of which requires to use multiple generators of
an elliptic curve group, while the other one uses only a single generator. We prove that both
protocols fulfill fairness, maximum ballot secrecy and dispute-freeness under the partial-collusion
attack model. Their correct execution and security are guaranteed by the underlying consensus
mechanism of Ethereum and thus no trusted authorities are required. We rigorously analyze the
efficiency of the protocols from the perspectives of computational complexity and communication
complexity. Also, we estimate the total payments of the administrator and the voters for the
multiple-generator construction and single-generator construction respectively and make
comparisons.

1. Introduction
The notion of block chain was first proposed in the Bitcoin cryptocurrency system [1]. Its initial

motivation is to support Bitcoin system’s financial transactions while removing the centralized role
of banks, but now it has been further applied to many other industry fields, such as supply chain,
legal and medical. The block chain can be viewed as an append-only ledger, maintained by an
open-membership decentralized peer-to-peer network. The security of block chain is guaranteed by
the consensus mechanism [2], which promotes agreement on the transaction history.

Since the emerge of the Bitcoin, other block chain-based systems have been created that extend
the function of the block chain beyond being a cash system and allow to express other kinds of
applications on the block chain as “smart contracts”. One such system is Ethereum [3]. Ethereum
block chain is a globally distributed computing platform which executes smart contracts and allows
to build several of decentralized applications on it with its built-in economic functions. Ethereum's
development plan is divided into four different stages, each of which will undergo major changes.
The four stages are named Frontier, Homestead, Metropolis and Serenity. Current stage is the
Metropolis.

Many applications of smart contracts have been proposed. Bonneau et al. embed the core data
structures of CONIKS, a key transparency system for maintaining the directory of users’ public
keys, into a smart contract with minor modifications [4]. Users of the resulting system can rely on
the Ethereum’s network to audit data structures. Due to several drawbacks of the public key
infrastructure (PKI) arising from its centralized design, Al-Bassam proposed an alternative PKI
system with decentralized and transparent properties using a smart contract [5]. The contract-based
PKI makes it easy to detect rogue certificates when they are published. To achieve verifiable cloud
computing at a reasonable cost, Dong et al. applied smart contracts to the betrayal, tension and
distrust between the clouds [6]. They demonstrated that, after introducing smart contracts, any
rational cloud will not cheat or collude according to game theory. To defend against the dishonest
behaviors of domain in using certificates during Transport Layer Security (TLS) handshake
authentication, Xia et al. proposed a block chain-based system ETDA based on IKP and certificate
transparency [7]. In the system, a smart contract is used to enforce the automatic punishment for

2019 International Conference on Educational Reform, Management Science and Sociology (ERMSS 2019)

Published by CSP © 2019 the Authors 248

domain’s misbehavior and avoids domains sending invalid certificates to users. McCorry et al.
implemented a decentralized internet voting protocol that is self-tallying and has maximum voter
privacy using smart contracts over Ethereum [8]. Their voting protocol confines to the case where
there is only two options to vote, such as yes/ No.

Besides the applications of Ethereum, some works for improving Ethereum smart contract have
also been done. Zhang et al. presented an authenticated data feed system named Town Crier that
serves as a bridge between Ethereum smart contracts and existing websites [9]. Amani et al.
extended an existing Ethereum Virtual Machine (EVM) formalization in Isabelle/HOL with a
program logic at the bytecode level, which helps to control the complexity and cost of formal
verification of smart contracts on EVM [10].

The decentralization, auditability and transparency natures of Ethereum is especially useful for
the implementation of decentralized anonymous voting. There have been a great number of works
aimed at reducing the dependency of the security of voting protocols on trusted authorities. A
standard approach that has been used in many election protocols is to distribute the trust among
multiple third parties by a threshold scheme, such that the security does not depend on a single
trusted authority [11, 12]. However, this still requires the trust for the third parties altogether. To
solve this problem, Kiayias and Yung proposed a self-tallying voting protocol that provided
maximum privacy of voters [13]. It assumes the existence of a bulletin board, which is a public
broadcast channel with memory and used for all communications between the participants.
However, the protocol requires heavy computational load for the voters. Afterwards, Groth studied
the efficiency limits of the Kiayias-Yung protocol and proposed a new voting scheme with better
computational complexity [14]. Unfortunately, Groth’s protocol requires large numbers of rounds.
Based on these studies, F. Hao et al. proposed a two-round self-tallying anonymous voting scheme
with small computational load and maximum privacy of voters [15]. The protocol assumes the
existence of a bulletin board and a public authenticated channel accessible for each voter. The
decentralized internet voting protocol implemented by McCorry et al. using smart contracts is based
on the two-candidate case of this protocol.

In this paper, we present a decentralized anonymous voting protocol that is self-tallying and
support multiple-candidate case based on Ethereum smart contracts. In the protocol, the Ethereum
block chain serves as the public bulletin board and the underlying peer-to-peer network is used as
an authenticated channel. The consensus mechanism which guarantees the security of Ethereum
enforces the correct implementation of the protocol. Specifically, our primary contributions are:

- We propose two ways to implement a decentralized and self-tallying anonymous voting
protocol over Ethereum for multiple-candidate case, one of which uses multiple generators of an
elliptic curve group while the other one uses only single generator. The execution and security rely
on the underlying consensus mechanism of Ethereum and do not require any trusted authority.

- We prove that the protocol fulfills completeness, robustness, eligibility, unreusability, fairness,
maximum ballot secrecy and dispute-freeness under the partial-collusion attack model.

- We rigorously analyze the efficiency of the protocol from the perspectives of computational
complexity and communication complexity. Also, we estimate the total payments of the
administrator and the voters for both the multiple-generator case and single-generator case and
compare these two kinds of implementations.

2. Background
In this section, we briefly recall preliminary notions concerning Ethereum. From the perspective

of computer science, Ethereum is a globally distributed computing platform which executes
programs called smart contracts. It utilizes a block chain to store and synchronize the state of system,
and a cryptocurrency named ether (or ETH) to measure and restrict the costs of execution resource.

There are two types of accounts in Ethereum. One is called externally owned account (EOA). An
EOA is actually a public-private key pair and controlled by a person or an external server who has
the private key. Another type of account is a smart contract account which has no private key and is

249

controlled by the logic if its code. The programs wrote on smart contracts are run on the emulated
computer called Ethereum Virtual Machine (EVM). Both types of account can store ethers.

A smart contract will not be executed unless it is originally activated by a user-owned account.
That is, smart contracts is allowed to call other contracts directly, but the origin of a series of calls
must be an EOA. Externally owned accounts create and call smart contracts by sending transactions
to relevant addresses, e.g. the zero address when creating a smart contract. The basic structure of
transactions in Ethereum contains the following six fields:

-From: a digital signature of an originating EOA.
-To: destination Ethereum address and can be either an EOA or a contract address.
-Data: variable length binary data payload, generally contains the code of a contract to be created

or execution instructions for called contract.
-Gas Price: the price of gas that the originating user is willing to pay using ether currency.
-Gas Limit: the maximum amount of gas the originating user is willing to pay for this

transaction.
-Nonce: the number of transactions that have been sent from the originating address.
Valid transactions will eventually be included in the Ethereum block chain by the miners,

causing a global state transition. The Ethereum block chain can be viewed as a transaction-based
orderly state machine. If a smart contract is called by several transactions, then the final state of the
contract is determined by the order in which transactions are stored in the block chain. The security
of the block chain is guaranteed by the consensus mechanism called proof of work (POW). Proof of
work is essentially a computationally difficult puzzle, and the miner who finds the solution is
allowed to append a new block. The POW algorithm used by Ethereum is called Ethash and makes
use of an evolution of the Dagger-Hashimoto algorithm. Solving Ethash requires to maintain and
frequently access a large database, which makes it "ASIC resistant". That is, it is difficult to
produce Application Specific Integrated Circuits (ASIC) mining equipment that solves Ehash much
faster than a GPU. The miner who successfully appends a new block can get 5 ETH as a reward.
Beside this, he also receives all the gas in fees cost by the transactions in the block he appends. The
POW consensus mechanism has been proved to fulfill two security properties: persistence and
liveness. Persistence states that once a transaction is contained in a block that has depth larger than
some security parameter k in the block chain of an honest node, then it will be included in the same
position in the block chain held by each honest player with overwhelming probability. Liveness
ensures that all transactions originating from honest nodes will eventually are included in an honest
node’s block chain with depth larger than k.

The storage and computational resources on Ethereum is measured and limited by gas. Each user
must set the maximum amount of gas he is willing to pay for the transaction before sending it. If the
gas is run out before all operations are completed, the execution will be halted and the transaction
will be reverted. This mechanism helps to prevent accidental or malicious wastage of computational
resource of the network. Each basic operation executed by a contract or a transaction has a fixed
cost in gas. For examples, an addition of two numbers takes 3 gas, and sending a transaction
requires 21,000 gas. If the execution of a transaction finishes successfully, the gas cost for the
execution will be converted to ether according to the gas price specified by the sender and paid to
the miner as a transaction fee:

Miner fee = gas cost gas price× (1)

The remaining gas will be refunded to the sender
The Ethereum provides a platform for building powerful decentralized applications. Its natures of

high auditability, availability and transparency make it suitable for building decentralized voting
protocols. The block chain can be used as a public bulletin board of the voting scheme, and its
underlying peer-to-peer network can serve as an authenticated channel. The rules of the voting
protocol are converted to the code logic of a smart contract, and voters cast ballots by interacting
with the smart contract as shown in Fig 1. The correct implementation of the voting is enforced by

250

the consensus mechanism which guarantees the security of Ethereum.

Figure 1. Schematic diagram of implementing a voting protocol on Ethereum.

3. Self-tallying anonymous voting protocol
In this section we present two multiple-candidate boardroom voting protocols before discussing

how to implement them over Ethereum. Both voting protocols are based on the two-round
anonymous election scheme proposed by Hao. F et al. [15]. The election scheme in [15] is
self-tallying. That is, it does not require a trusted authority to tally the ballots. Instead, any voter or
any third-party observer can execute the tally computation by themselves via an open procedure.
This accords with the block chain’s core design principle of decentralization. However, the
self-tallying scheme has the fairness drawback that the last voter is able compute the tally ahead of
others, which may lead to adaptive problems. The last voter can decide his own vote according to
other voters’ choices. To address this problem, we add an extra round before the formal vote where
all voters are required to publish the hash of their encrypted vote so that any voter, including the last
one, cannot change his vote even though he can compute the tally.

The protocols in this paper assume an authenticated public channel accessible for all participants.
This is a basic requirement for election protocols and the underlying peer-to-peer network of the
Blockchain can serve as such an authenticated channel. The anonymous election scheme proposed
by Hao. F et al. is originally for the case where there is only two options, such as yes/ No. To
extend the scheme to multiple-candidate case, they offer two different methods. One uses multiple
independent generators of the finite field to represent different candidate. The other one uses only a
single generator but the plaintext of ballots have larger exponents. Our two boardroom voting
protocols also respectively apply these two methods. In the following we present the description of
both protocols, and in the fifth section we will compare their efficiency after combining with smart
contracts.

3.1 Voting Protocol Based on Multiple Generators

Suppose there are n voters and k candidates. The eligible voters are denoted by 1 2, , , nP P P ,
respectively. Let E denote an elliptic curve over a finite field q where the Decisional
Diffie-Hellman problem is intractable. Let 1 2, , , , kG G G G be k+1 independent generators of .E for
an arbitrary point ,Z E∈ we use the notation GLog Z to denote the scalar qz∈ such that .Z zG=
let H denote some publicly agreed collision-resistant hash function. Each voter iP selects a value

i R qx ∈  at random as their private key. The voters execute the following three-round protocol:

251

Protocol 1.
Round 1. Each voter iP broadcasts the voting key ix G and a non-interactive zero-knowledge

proof ()iNIZKP x to prove the knowledge of the scalar ix on the bulletin board. The proof
()iNIZKP x is generated by Schnarr’s signature [16] and Fait-Shamir heuristic [17], and we explain

the detailed computations below. At the end of this round, every voter checks the validity of all
zero-knowledge proofs and then computes a set of reconstructed keys:

1

1 1
, 1, 2, .

i n

i j j
j j i

Y x G x G i n
−

= = +

= − =∑ ∑  (2)

Suppose i iY y G= for some i qy ∈ , then it holds that 0i ii
x y =∑ .

Round 2. Each voter iP calculates the encrypted vote i i ix y G Q+ , where 1 2{ , , , }i kQ G G G∈ 

and i jQ G= if iP chooses the jth candidate. Then he commits his ballot by publishing the hash of

the encrypted vote ()i i iH x y G Q+ .

Round 3. Each voter iP publishes i i ix y G Q+ and a non-interactive zero-knowledge proof
()iNIZKP Q to prove that iQ is one of 1 2{ , , , }kG G G without leaking which one. This one-out-of-k

zero-knowledge proof is generated by CDS technique [18] and Fait-Shamir heuristic, and we
explain the detailed computations below. All zero-knowledge proofs and commitments need to be
verified before tallying.

Once all votes have been cast, anyone can compute ()i i ii
x y G Q+∑ . Since 0i ii

x y =∑ , it is equal

to 1 1 2 2i k ki
Q c G c G c G= + + +∑  , where 1 2, , , kc c c are the corresponding counts of the votes

for k candidates. The tally 1 2, , , kc c c are all small numbers, so they can be calculated by

exhaustive search. There are 1 1
1 ()k k

n kC O n− −
+ − = possible voting results. The exhaustive search is

feasible when k is a small number.
In the above protocol, each voter needs to compute two non-interactive zero-knowledge proofs.

In Round 1, each voter iP computes the zero-knowledge proof ()iNIZKP x to prove his knowledge
of the scalar ix by Schnarr’s signature and Fait-Shamir heuristic. Specifically, iP chooses a random

R qv∈  and calculates the zero-knowledge proof (,)ivG r v x z= − , where (, , ,)iz H G vG x G i= . To

verify the proof, one only needs to check whether vG is equal to irG zx G+ .
In Round 3, each voter iP computes the zero-knowledge proof ()iNIZKP Q to prove that iQ is

one of 1 2{ , , , }kG G G by CDS technique. Specifically, iP first converts the encrypted vote to the
form of the ElGamal encryption

(, ()).i i i ix G x y G Q+ (3)

This is exactly the Megamall encryption of iQ with a public key iy G and randomness ix . When
given a general ElGamal encryption (,) (,)i iX K x G x Y M= + , the CDS protocol proves that M is
one of 1 2{ , , , }kM M M without leaking which through proving the following statement

1 2() () ().G Y G Y G Y kLog X Log K M Log X Log K M Log X Log K M= − ∨ = − ∨ ∨ = − (4)

252

Fig 2. Represents a three-round interactive protocol using CDS technique to prove the above
statement with iY y G= and 1 1 2 2, , , k kM G M G M G= = = . By Fait-Shamir heuristic we can
convert it into a non-interactive proof. Specifically, let the challenge c in the protocol be the hash
value

1 1(, , , , , , , ,),k kH i X Y A A B B  (5)

Instead of randomly chosen by the verifier, then the non-interactive proof is

1 2 1 2 1 2 1 2(, , , , , , , , , , , , , , ,),k k k kA A A B B B d d d r r r    (6)

Where 1 2 1 2, , , , , , ,k kd d d r r r  are generated as the protocol in Fig 2 while using the challenge c
defined in Eq. (5). For further details about one-out-of-k proof, one can refer to [18].

Figure 2. One-out-of-k proof of knowledge.

3.2 Voting Protocol Based on a Single Generator
Now we turn to another construction of multiple-candidate boardroom voting protocol using

only a single generator. We still assumes there are k candidates and n eligible voters denoted
1 2, , , nP P P . E Denotes an elliptic curve over a finite field q where the Decisional

Diffie-Hellman problem is intractable, andG is a generator of .E H still denotes a publicly agreed
collision-resistant hash function. Each voter iP selects a value i R qx ∈  at random as their private
key. The voters execute the following three-round protocol:

Protocol 2.

Round 1. Each voter iP broadcasts the voting key ix G and a non-interactive zero-knowledge
proof ()iNIZKP x to prove the knowledge of the scalar ix on the bulletin board. The proof

()iNIZKP x is generated by Schnarr’s signature and Fait-Shamir heuristic as in Protocol 1. At the
end of this round, every voter checks the validity of all zero-knowledge proofs and computes a set
of reconstructed keys 1 2, ,..., nY Y Y by Eq.(2). Suppose i iY y G= for some i qy ∈ , then it holds that

0i ii
x y =∑ .

Round 2. Let m be the smallest integer in q such that 2 .m n> each voter iP calculates the
encrypted vote i i ix y G v G+ , where 0 2 (1){2 ,2 ,2 ,..., 2 }m m k m

iv −∈ and (1)2 j m
iv −= if iP chooses the jth

253

candidate. Then he commits his ballot by publishing the hash of the encrypted vote ()i i iH x y G v G+ .
Round 3. Each voter iP publishes i i ix y G v G+ and a non-interactive zero-knowledge proof

()iNIZKP v to prove that iv is one of 0 2 (1){2 ,2 ,2 ,..., 2 }m m k m− without leaking which one it is. This
one-out-of-k zero-knowledge proof is generated in the same way as ()iNIZKP Q in Protocol 1,
except that iQ is replaced by iv G , and 1 2, ,..., kG G G is replaced by 0 2 (1){2 ,2 ,2 ,..., 2 }.m m k m− all
zero-knowledge proofs and commitments need to be verified before tallying.

Once all votes have been cast, anyone can compute ()i i ii
x y G v G+∑ . Since 0i ii

x y =∑ , it is

equal to () .ii
v G∑ its scalar to G is the sum of votes. The super-increasing property of the encoding

guarantees that the sum can be unambiguously resolved into the count of votes for each candidate.
Suppose

0 (1)
1 22 2 ... 2 ,m k m

i ki
v c c c −= + + +∑ (7)

Then 1 2, , , kc c c are the counts of votes for the k candidates respectively. As in the Protocol 1,
to compute the tally, one needs to find the value ii

v∑ by exhaustive search. This can be sped up by
pre-computing the possible combinations.

4. Boardroom Voting Protocol over Ethereum
In this section, we present how to implement a decentralized self-tallying voting by combining

the Protocol 1 and Protocol 2 respectively with the Ethereum. The Ethereum block chain is used as
the public bulletin board of the voting scheme, and its underlying peer-to-peer network serves as an
authenticated channel for all voters. No trusted authority is required. The correct implementation of
the voting protocol is enforced by the consensus mechanism of Ethereum. In addition to the voters,
we still need an administrator to update the eligible voter list, set deadlines and choose parameters,
but we stress that the administrator need not be a trustworthy authority. The way to implement
Protocol 1 and Protocol 2 using Ethereum is quite similar. Thus we focus on the description of
Protocol 1’s implementation, and point out the execution of Protocol 2 when there are differences.

As mentioned earlier, self-tallying voting protocols have the drawback that the last voter is able
to compute the tally ahead of others, which may lead to adaptive problems. Thus we require all
voters to publish the commitment of their encrypted votes so that the last voter cannot change his
ballot even though he is able to compute the tally. However, there remains abortive problems. The
final voter can give up casting his vote if he is not satisfied with the tally. To address this issue, we
require every voter to deposit a certain amount of ether when registering for voting. The money will
be refunded as long as the voter completes the voting protocol.

The voting protocol is implemented in five stages and demands voter interaction only in three
rounds. The five stages include: INITIALIZATION, SIGNUP, COMMIT, VOTE and TALLY, as
shown in Fig 3. We describe each stage in details in the following:

Figure 3. The five stages of the voting protocol in multiple-generator case

254

Intialization. The administrator sets the list of voting candidates and the amount of registration
deposit .d then he authenticates every voter by their externally owned account and updates the
voter list of the voting contract with these accounts. The administrator also sets a list of deadlines to
guarantee that the voting is conducted in an orderly manner:

- EndRegistrationt : each voter iP must register the voting key ix G before this time.

- EndCommitt : each voter iP must commit their vote before this time.

- EndVotingt : each voter iP must cast their ballot i i ix y G Q+ (or i i ix y G v G+ when Protocol

2 is implemented) before this time.
At last, the administrator informs Ethereum to move to the SIGNUP stage.
SIGNUP. Eligible voters can register in this stage. Each voter iP computes the voting key ix G

and the non-interactive proof ()iNIZKP x and sends them to Ethereum with d ether as a deposit.

Ethereum only accepts registrations before EndRegistrationt . After all voters have registered, the

administrator notifies Ethereum to compute all reconstructed keys 1 2, ,..., ny G y G y G and move to the
COMMIT stage.

COMMIT. Each voter iP sends their commitment ()i i iH x y G Q+ (or ()i i iH x y G v G+ when
Protocol 2 is implemented) to the voting contract. The contract automatically enters the VOTE
stage when all commitments are accepted.

VOTE. Each voter iP sends their encrypted vote i+i ix y G Q (or i i ix y G v G+ when Protocol 2 is
implemented) and the one-out-of-k proof ()iNIZKP Q (or ()iNIZKP v) to the voting contract.
Ethereum refund he deposit once it receives the vote. After all votes are cast, the administrator
notifies Ethereum to enter the TALLY stage.

TALLY. Ethereum verifies all one-out-of-k proofs and then computes the sum
()i i i ii i
x y G Q Q+ =∑ ∑ , then searches for 1 2, ,..., k qc c c ∈ such that 1 1 2 2i k ki

Q c G c G c G= + + +∑  .
This is done by exhaustively calculating the sum of all 1

1
k
n kC −
+ − possible combinations. We present

the pseudo-code for exhaustive search of 1 2, ,..., kc c c in Algorithm 1 below. Specifically, since k is a
variable parameter selected by the administrator, we perform the exhaustive search recursively.
Algorithm 1 defines a recursive function F, to compute the tally, one only needs to define a vector

1 2(, ,...,)kc c c of length n and initialize it to zero vector, then call function F with the arguments
, , ii

m k n n G Q= = =∑ .
If it is Protocol 2 that is implemented, Ethereum computes the sum
() ()i i i ii i
x y G v G v G+ =∑ ∑ , then search for 1 2, ,..., kc c c such that

0 (1)
1 2(2 2 ... 2) ()m k m

k ii
c c c G v G−+ + + = ∑ . This can be done by calculating all 1

1
k
n kC −
+ − possible

combinations. Similar to the case of implementing Protocol 1, we can complete the exhaustive
search by recursion. The pseudo-code is almost the same as Algorithm 1 and thus we omit it.

255

In the following we further elaborate subtle issues:
Deposit refund. After tallying, Ethereum will refund the deposits to all voters. There are also two

scenarios where the voters can obtain their refund. First, if a registered voter has committed while
some other voters not by EndCommitt , he can claim his refund. Second, if a registered voter has

voted while some other voters not by EndVotingt , he can also claim his refund.

Generator construction. The k generators 1 2, ,..., kG G G used in Protocol 1 can be constructed in a
simple way: choose a single G and compute (() ||)jG H encode G j← for 1,2,...,j k= , where H is
some hash function. It is a usual method for producing multiple generators.

Replay attack. It is notable that an eligible voter iP can register the same voting key jx G as
some other voter jP by replaying jx G and ()jNIZKP x . This allows iP latter copy the vote of jP .
Thus we in the above implementation, we require that the hash function’s arguments must include
the variable “msg. sender” when generating the non-interactive proof ()jNIZKP x . This makes the
protocol resistant to the replay attacks.

Scalar multiplication computation. During the execution of the Protocol 1 and Protocol 2, we
need to perform scalar multiplication of points in the elliptic curve E frequently. The
straightforward way to compute a scalar multiplication aG for qa∈ and G E∈ is to compute

...G G G+ + + with 1a − additions. As a increases, the amount of calculation will increase
greatly. One can use Square and multiply method to reduce the amount of calculation greatly. For
example, when computing aG , one first resolves a into

1

1 1 02 2 ... 2 ,k k
k ka b b b b−

−= + + + + (8)

Then computes

1 2 1 0((((() 2) 2) 2...) 2) 2 .k k kaG b G b G b G b G b G− −= × + × + × × + × + (9)

This requires only (log)jj
b k O a+ =∑ additions. The pseudo-code of the Square and Multiply

method is presented in Algorithm 2 below.

256

5. Analysis
In this section, we analyze the protocol from the perspectives of security and efficiency,

respectively. For the security, we first represent eight security conditions that a self-tallying voting
scheme should meet, then prove that the boardroom voting protocol over Ethereum proposed in the
previous section satisfies these conditions. For the efficiency, we analyze the computational
complexity, communication complexity and payment of the protocol over Ethereum for both the
multiple-generator case and the single-generator case, and compare these two kinds of
implementation.

5.1 Security Analysis
To analyze the security of the protocol, we first need to consider the attack model. There are two

kinds of adversary. Passive adversaries only eavesdrop on the communication, while the active
adversaries participate in the vote and may collude with other voters. Any decentralized voting
scheme cannot resist a full collusion where all voters are dishonest except one, since adversaries can
compute the vote of the only honest voter by simply subtracting their votes from the tally. Therefore,
we only consider the partial collusion.

As mentioned in [13, 14], self-tallying anonymous voting protocols under the partial-collusion
attack model should satisfy three requirement: maximum ballot secrecy, self-tallying and
dispute-freeness. Simultaneously, a general voting scheme also needs to fulfill seven basic
properties, which is proposed by A. Fujioka et al. [19] and have been widely used. Excluding two
repeated requirements, we obtain eight secure properties that a self-tallying voting protocol needs to
satisfy:

-Completeness: each valid ballot is correctly counted.
-Robustness (soundness): dishonest voters cannot disrupt the voting.
-Eligibility: only eligible voters are able to vote.
-Unreusability: no voter is able to vote twice.
-Fairness: Each voter casts his vote independently and cannot vote depending on other honest

voters’ choices.
-Maximum ballot secrecy: every cast ballot must be a cipher text indistinguishable from random,

and therefore reveal nothing about the choice of the voter.
-Self-tallying: After all votes have been cast, anyone is able to compute the result by himself.
-Dispute-freeness (verifiability): anyone can verify whether all voters behave according to the

protocol.
In the following we demonstrate that the protocol presented in the fourth section fulfills the

above eight properties. It is obvious to see that the completeness, eligibility, unreusability and
self-tallying are satisfied. Thus we focus on the remaining four properties.

Robustness. The protocol’s robustness is guaranteed by the liveness of the underlying block
chain and the financial incentive introduced by the deposit-refund paradigm. If a voter correctly
implements the protocol, he will interact with the smart contract on Ethereum by initiating
transactions. The liveness property of the Ethereum block chain ensures that the transaction will be

257

included in a block of the block chain soon, so that the ballot of the voter must be cast. Therefore,
the attacker cannot disrupt the vote of honest voters. As for the dishonest eligible voters, the
financial incentive provided by the deposit-refund paradigm will enforce them to cast their ballots
in time.

Maximum ballot secrecy. We only prove the maximum ballot secrecy of the protocol for the
multiple-generator case. The proof for the single-generator case is similar. In the protocol, the
adversary can see the voting key ix G , the encrypted ballot i i ix y G Q+ , its commitment ()i i iH x y G Q+
and two non-interactive zero-knowledge proofs. Due to the security of the hash function, the
commitment does not reveal any information of the ballot. Therefore, we only need to proof that

i i ix y G Q+ is indistinguishable from random to the adversaries in a partial collusion attack even
given ix G and the proofs (), ()i iNIZKP x NIZKP Q . Specifically, we have following theorem:

Theorem 1. Under the Elliptic Curve Diffie-Hellman assumption, adversaries in a partial
collusion attack against a voter iP cannot distinguish the encrypted ballot

1 2, { , ,..., }i i i i kx y G Q Q G G G+ ∈ from a random point in the elliptic curve group E .
Proof. In addition to the encrypted ballot, adversaries can also obtain , ()i ix G NIZKP x and

()iNIZKP Q . Due to the security of the Schnarr’s signature, Fait-Shamir heuristic and CDS
technique, both non-interactive proofs will not reveal any information other than the assertions
proved. Thus we only need to consider the voting key ix G . The secret key ix is chosen randomly by
the voter iP . According to the Elliptic Curve Diffie-Hellman assumption, as long as iy is randomly
and secretly chosen from q , the encrypted ballot i ix y G will be indistinguishable from a random
element in E . Hence the only thing left is to prove that iy is a secret random value. To prove this,
consider the worst situation where there is only one voter ()lP l i≠ other than iP participates in the
collusion. Then its secret key lx in uniformly distributed in q . Since iy is computed by doing
addition or subtraction between all (,)jx j l i≠ and lx , iy is also a uniformly random element in

q .
Theorem 1 states that each encrypted ballot is indistinguishable from a random element in the

elliptic curve group to any adversary in a partial collusion attack, which means the protocol fulfills
the maximum ballot secrecy.

Fairness. The fairness requires that each voter casts his vote independently and cannot vote
depending on other honest voters’ choices. For all eligible voter who are not the last to vote, the
ballots of other voters are all random elements in the elliptic curve due to the maximum ballot
secrecy property. Thus they are not able to vote according to the choices of other voters. Moreover,
the commitment stage enforce that the last voter cannot change his vote even though he can
compute the tally before others. This ensures that even the last voter cannot decide his vote
according to other voters’ choices.

Dispute-freeness. The underlying peer-to-peer network of Ethereum allows anyone to
authenticate the identity of the voters, and by verifying the non-interactive zero-knowledge proofs,
everybody can check whether the ballots cast by the voters are valid. These verification can
guarantee that all voters execute the protocol honestly. Due to the self-tallying property, these
verification ensures the correctness of the final tally.

5.2 Efficiency and Comparison
We analyze the efficiency of the protocol from the perspectives of computational complexity,

communication complexity and payment. The computational complexity includes two parts: local
calculations performed by the administrator or voters; the computations initiated by the
administrator or votes but executed on the Ethereum Virtual Machine (EVM) by the miners. The
computations on the EVM is expensive and paid by gas, thus they are the main considerations of the

258

computational complexity. Communication complexity refers to the total length of messages that
the administrator or voters need to send to the smart contracts. Ethereum nodes uses the "data" field
in the transactions to transmit messages to smart contracts. The larger the data transmitted, the more
gas spent. The gas payment depends on both the computational complexity and the communication
complexity. We will define the gas payment of several basic operations, then estimate the total
payments of the administrator and the voters for the multiple-generator case and single-generator
case respectively.

We first consider the efficiency of the administrator. To this end, we analyze in detail the
operations that the administrator need to execute at each stage. At the stage INTIALIZATION, the
administrator needs to send the list of n eligible voters, sets the timers and notifies the smart
contract to enter the last stage. All these can be done through one transaction (e.g. define a function
to contain all these operation in the smart contract). Each address over Ethereum have 160 bits.
Thus the eligible-voter list has a total of 160n bits. The length of the timers is small compared to
the list, so we omit it in the analysis for simplicity. Therefore, the communication complexity in this
stage is160n bits. Suppose each bit of data transmission requires dataf gas and sending a basic
transaction costs β gas (which is 21,000 at the time of writing), then the total payment of the
administrator in this stage is about (160)datanf β a+ ETH, whereα is the gas price measured in
ether.

In the SIGNUP stage, the administrator need to inform the smart contract to enter the next stage.
Meanwhile, the transaction initiated by the administrator also call the function of the smart contract
to compute the reconstructed keys and verify the non-interactive proofs () 'iNIZKP x s . These
computations will finally be executed on the EVM by the miners. Generating each reconstructed
key requires 2n − additions of group elements. Thus computing all reconstructed keys needs

(2)n n − group additions. To estimate the amount of calculations required for verifying the
zero-knowledge proofs, we first analyze how many group additions is needed to calculate a random
scalar multiplication on average. By the Square and Multiply method, compute a scalar
multiplication xG requires (log)O x group additions. Thus, for a randomly chosen qx∈ , the
average addition needed to compute xG is

1

1 1 1log log(!) (log(2 ())) (log),String formula
q

n

x

nx q O n O q
q q q e

π
=

= → =∑ (10)

That is, calculate a random scalar multiplication requires (log)O q additions on average.
Verifying each proof ()iNIZKP x needs one hash computation, two random scalar multiplications
and one group addition. Thus (2 log 1)O q + group additions and one hash computation is required
in total. In summary, the computational complexity of this stage contains one hash computation and

(2 log (2) 1)O q n n+ − + group additions on EVM. Suppose one group addition requires addf gas,
one hash computation requires hashf gas, then the total payment is about
(2 log (2) 1) add hashq n n f fa a βa+ − + + + ETH.

The administrator does not participate in the COMMIT and the VOTE stages. But in the end of
the VOTE stage, the administrator need to notify Ethereum to enter the TALLY stage. The
transaction initiated by the administrator will then call the function of the smart contract to verify all
one-out-of-k zero-knowledge proofs and compute the tally. Corresponding computations will then
be executed by the miners. The computational complexity of this stage is different in the
multiple-generator case and the single-generator case. We first consider the multiple-generator case.
As shown in Fig.2, verifying each ()iNIZKP Q needs to compute 1 1,..., , ,...,k kA A B B . Each lA requires
two random scalar multiplications and one group addition, while each lB requires two random
scalar multiplications and two group additions. Thus computing 'lA s and 'lB s requires a total

259

(4 log 3)O k q k+ group additions. In addition, verifying the proof also needs one hash computation
and k-1 additions in q , so the total computation needed for verifying the n one-out-of-k
zero-knowledge proofs includes (4 log 3)O kn q kn+ group additions, (1)k n− additions in q and
n hash computations. To compute the tally, the EVM should first compute the sum ()i i ii

x y G Q+∑ ,
which needs n-1 group additions, then searches for 1 2, ,..., k qc c c ∈ by exhaustively calculating the

sum of all 1
1

k
n kC −
+ − possible combinations. Computing 1 1 2 2 k kc G c G c G+ + + for random 'ic s

requires (log 1)O k q k+ − group additions, so the exhaustive search needs
1

1((log 1))k
n kO C k q k−
+ − + − group additions. This stage’s computational complexity contains

1
1((log 1) 4 log 3)k

n kO C k q k kn q kn−
+ − + − + + group additions, (1)k n− additions in q and n hash

computations. Suppose one addition in q requires add qf − gas, the total payment is
1

1((log 1) 4 log 3) (1)k
n k add hash add qC k q k kn q kn f nf k nfa a a βa−
+ − −+ − + + + + − + ETH.

For the single-generator case, verifying each ()iNIZKP v requires to compute
2 (1)2 , 2 ..., 2m m k mG G G− in addition. This needs (0.5 (1) log)O k k n− group additions. By the

Square and Multiply method, the exhaustive search for 1 2, ,..., kc c c only needs 1(log)+k-1
k
nO C k n− group

additions. Therefore, for single-generator case this stage needs a total of
1

1(log 4 log 3 0.5 (1) log)k
n kO C k q kn q kn k k n−
+ − + + + − group additions, (1)k n− additions in q and n

hash computations. The total payment is 1
1(log 4 log 3 0.5 (1) log)k

n k addC k q kn q kn k k n f a−
+ − + + + −

(1)hash add qnf k nfa a βa−+ + − + ETH.

Table 1. Gas cost for various basic operations.
Operation Gas cost

Sending a transaction β
Data transmission per bit dataf

Hash computation hashf

Group addition addf

Addition in q add qf −

In summary, we list the gas cost of each basic operation in Table 1, and present the total
computational complexity, communication complexity and payment of the administrator for the
whole implementation in Table 2, where (, ,)k q nΓ and (, ,)k q nΛ are defined as:

1 2
1(, ,) log (4 log 3) 2log 1,k

n kk q n C k q kn q n n q−
+ −Γ = + + + − + + (11)

(, ,) (, ,) (1) (1) 3 .add hash add qk q n k q n f n f k nfa a a βa−Λ = Γ + + + − + (12)

260

Table 2. Administrator’s efficiency of the entire implementation.
Efficiency

Underlying protocol Multiple-generator protocol Single-generator protocol

Computational
Complexity

Group addition (on
EVM)

1
1(, ,) (1)k

n kk q n C k−
+ −Γ + −

1(, ,) (1) log
2

k q n k k nΓ + −

Hash computation (on
EVM) 1n + 1n +

Addition in q (on

EVM)
(1)k n− (1)k n−

Communication complexity (bit) 160n 160n

Payment (ETH) 1
1(, ,) (1)k

n k addk q n C k f a−
+ −Λ + −

1(, ,) (1) log
2 addk q n k k nf aΛ + −

Now we turn to the voter’s efficiency. The voters do not participate in the INTIALIZATION and
TALLY stages. In the SIGNUP stage, each vote needs to compute the voting key ix G and the
non-interactive proof ()iNIZKP x locally. Computing the voting key requires one random scalar
multiplication, while the non-interactive proof requires one hash computation, one addition in q ,
one multiplication in q and one random scalar multiplication. Thus, in this stage each voter’s
computational complexity contains local computations of (2 log)O q group additions, one hash
computation, one addition in q and one multiplication in .q each voter needs to send the voting
key and the proof to the smart contract, they contain two elements in the elliptic curve group and an
element in q in total. Ethereum uses the elliptic curve digital signature algorithm Keccak256. In
order to be consistent, we assume the elements of the elliptic curve group E also have 256 bits.
Thus the communication complexity of this stage is512 log q+ bits. Since local computations do not
cost gas, the payment is about (512 log) dataq f a+ βα+ ETH.

In the COMMIT stage, we first consider the multiple-generator case. Each voter computes the
encrypted vote i i ix y G Q+ and its commitment ()i i iH x y G Q+ , this requires local computations of
one random scalar multiplication, one group addition and one hash computation. Thus the
computational complexity of each voter in this stage contains one local hash computation and

(log 1)O q + local group additions. Each voter needs send a hash to the smart contract. The hash
used in Ethereum has a 160-bit output, thus the communication complexity is 160 bits. The total
payment is160 dataf a βa+ . For the single-generator case, each voter also needs to compute iv G
for some (1){ , 2 ,...2 }m k m

iv G G G−∈ besides the above operations. Since they need to compute iv G for
all (1)1, 2 ,...2m k m

iv −= in the next stage, we ignore this part of calculation at this stage. Therefore,
the efficiency of each voter in the single-generator case is the same as in the multiple-generator
case.

In the VOTE stage, we first consider the multiple-generator case. Each voter needs to compute
the non-interactive proof ()iNIZKP Q and send it with the encrypted vote i i ix y G Q+ to the smart
contract. The computational complexity contains (4 log 2log 3)O k q q k+ + local group additions and
one local hash computation. The proof ()iNIZKP Q contains 2k elements in the elliptic curve group
and 2k elements in q , thus the communication complexity is 2 log 256(2 1)k q k+ + bits. Since local
computations do not cost gas, the total payment is about (2 log 512 256) datak q k f a βa+ + + ETH.
For the single-generator case, each voter has almost the same efficiency except that they need
additional (0.5 (1) log)O k k n− group additions.

261

Table 3. Each voter’s efficiency of the entire implementation.
Efficiency

Underlying protocol Multiple-generator protocol Single-generator protocol

Computational
Complexity

Group addition
(on local computer)

Hash computation (on local
computer)

Addition in
(on local computer)

1 1

Multiplication in (on local
computer)

1 1

Communication complexity

Payment (ETH)

In summary, we present the total computational complexity, communication complexity and
payment of each voter for the whole implementation in Table 3, where they (,), (,)k q k q∆ Θ are
defined as:

(,) 4 log 5log 3 1,k q k q q k∆ = + + + (13)

(,) (2 1) log 512 928.k q k q kΘ = + + + (14)

Through the above analysis, we can see that the main cost of the administrator is for the
calculations on the EVM, while the main cost of the voters is for transmitting data to the smart
contract. By comparison, the multiple-generator case and single-generator case have the same
communication complexity. With respect to the computational complexity, the single-generator
case requires more local computations, while the multiple-generator case requires more
computations on the EVM. Since the computations on the EVM is much more costly and consumes
gas, the single-generator case has better computational complexity and costs less ethers. In addition,
the multiple-generator case also require the smart contract to store additional k generators. The
storage of the EVM is very expensive, this makes the deploy of the voting smart contract more
expensive in the multiple-generator case than in the single-generator case.

6. Conclusion
In this paper, we present a decentralized anonymous voting protocol that is self-tallying and

support multiple-candidate based on Ethereum smart contracts. We provide two specific ways to
implement the protocol over Ethereum. One uses multiple generators of an elliptic curve group
while the other one uses only a single generator. The Ethereum block chain serves as the public
bulletin board and the underlying peer-to-peer network is used as an authenticated channel. The
consensus mechanism that guarantees the security of Ethereum enforces the correct implementation
of the protocol and guarantees its security. Both implementation methods are proved to fulfill
completeness, robustness, eligibility, unreusability, fairness, maximum ballot secrecy and
dispute-freeness under the partial-collusion attack model. By the efficiency analysis of both
implementations, we demonstrate that the main cost of the administrator is for the calculations on
the EVM, while the main cost of the voters is for transmitting data to the smart contract. The
multiple-generator case and single-generator case have the same communication complexity, but
the single-generator case has better computational complexity and costs less ethers.

Acknowledgments
This research was funded by National Natural Science Foundation of China (Grant No.

61672517) and National Cryptography Development Fund (Grant No. MMJJ20170108).

(,)k q∆ 1(,) (1) log
2

k q k k n∆ + −

3 3

q

q

(2 1) log 512 928k q k+ + + (2 1) log 512 928k q k+ + +
(,) 3datak q f a βaΘ + (,) 3datak q f a βaΘ +

262

References
[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system” (2008).
[2] J. Garay, a Kiayias, N Leonardos, “The bitcoin backbone protocol: Analysis and applications”.
In: Advances in Cryptology - EUROCRYPT 2015 (Springer, Sofia, Bulgaria, 2015), pp. 281 - 310.
[3] G. Wood, “Ethereum: a secure decentralized transaction ledger” (2014).
[4] J. Bonneau, “EthIKS: Using Ethereum to audit a CONIKS key transparency log”. In:
International Conference on Financial Cryptography and Data Security (Springer, Rome, Italy,
2016), pp. 95 - 105.
[5] M. Al-Bassam, “SCPKI: a smart contract-based PKI and identity system”. In: ACM Workshop
on Blockchain, Cryptocurrencies and Contracts (ACM, Abu Dhabi, UAE, 2017), pp. 35 - 40.
[6] C. Dong, Y. Wang, A. Aldweesh, et al., “Betrayal, distrust, and rationality: Smart
counter-collusion contracts for verifiable cloud computing”. In: 2017 ACM SIGSAC Conference on
Computer and Communications Security (ACM, Toronto, Canada, 2017), pp. 211 - 227.
[7] B. Xia, D. Ji, G. Yao, “Enhanced tls handshake authentication with block chain and smart
contract”. In: International Workshop on Security, IWSEC 2017 (Springer, Hiroshima, Japan, 2017),
pp. 56-66.
[8] P. McCorry, S. F. Shahandashti, F. A. Hao, “smart contract for boardroom voting with
maximum voter privacy”. In: International Conference on Financial Cryptography and Data
Security (Springer, Sliema, Malta, 2017), pp. 357 - 375.
[9] F. Zhang, E. Cecchetti, K. Croman, et al., “Town crier: An authenticated data feed for smart
contracts” In: 2016 ACM SIGSAC conference on computer and communications security (ACM,
Vienna, Austria, 2016), pp. 270 - 282.
[10] S. Amani, M. Bégel, M. Bortin, et al., “Towards verifying ethereum smart contract bytecode in
Isabelle/HOL”. In: The 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs (ACM, Los Angeles, California, United States, 2018), pp. 66 - 77.
[11] R. CRAMER, R. GENNARO, B. SCHOENMAKERS, “A secure and optimally efficient
multi-authority election scheme”. In: EUROCRYPT 1997, (Springer, Konstanz, Germany, 1997), pp.
103-118.
[12] R. CRAMER, M. FRANKLIN, B. SCHOENMAKERS, M. YUNG, “Multiauthority
secret-ballot elections with linear work”. In: EUROCRYPT 1996 (Springer, Saragossa, Spain, 1996),
pp. 72 – 83.
[13] A. KIAYIAS, M. YUNG, “Self-tallying elections and perfect ballot secrecy”. In: Public Key
Cryptography, PKC 2002 (Springer, Paris, France, 2002), pp. 141 - 158
[14] J. GROTH, “Efficient maximal privacy in boardroom voting and anonymous broadcast”. In:
International Conference on Financial Cryptography’ 04 (Springer, Key West, FL, USA, 2004), pp.
90 - 104.
[15] F. Hao, P.Y.A. Ryan, P. Zielisńki, “Anonymous voting by two-round public discussion”. IET
Information Security, 4(2), 62-67 (2010).
[16] C. P. SCHNORR, “Efficient signature generation by smart cards”. Journal of Cryptology, 4(3),
161-174 (1991)
[17] A. Fiat, A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems”. In: CRYPTO’ 86 (Springer, Santa Barbara, CA, USA, 1986), pp. 186 - 194.
[18] J. GROTH, R. CRAMER, I. Damgård, B. SCHOENMAKERS, “Proofs of partial knowledge
and simplified design of witness hiding protocols”. In: CRYPTO’ 94 (Springer, Santa Barbara, CA,

263

USA), pp. 174 - 187.
[19] A. Fujioka, T. Okamoto, K. Ohta, “A practical secret voting scheme for large scale elections”.
In: International Workshop on the Theory and Application of Cryptographic Techniques (Springer,
1992), pp. 244 – 251.

264

	1. Introduction
	2. Background
	3. Self-tallying anonymous voting protocol
	4. Boardroom Voting Protocol over Ethereum
	5. Analysis
	6. Conclusion
	Acknowledgments
	References

